Recognition of Car Front Facing Style for Machine-Learning Data Annotation: A Quantitative Approach

Author:

Ma Lisha,Wu Yu,Li Qingnan,Yuan Xiaofang

Abstract

Car front facing style (CFFS) recognition is crucial to enhancing a company’s market competitiveness and brand image. However, there is a problem impeding its development: with the sudden increase in style design information, the traditional methods, based on feature calculation, are insufficient to quickly handle style analysis with a large volume of data. Therefore, we introduced a deep feature-based machine learning approach to solve the problem. Datasets are the basis of machine learning, but there is a lack of references for car style data annotations, which can lead to unreliable style data annotation. Therefore, a CFFS recognition method was proposed for machine-learning data annotation. Specifically, this study proposes a hierarchical model for analyzing CFFS style from the morphological perspective of layout, surface, graphics, and line. Based on the quantitative percentage of the three elements of style, this paper categorizes the CFFS into eight basic types of style and distinguishes the styles by expert analysis to summarize the characteristics of each layout, shape surface, and graphics. We use imagery diagrams and typical CFFS examples and characteristic laws of each style as annotation references to guide manual annotation data. This investigation established a CFFS dataset with eight types of style. The method was evaluated from a design perspective; we found that the accuracy obtained when using this method for CFFS data annotation exceeded that obtained when not using this method by 32.03%. Meanwhile, we used Vgg19, ResNet, ViT, MAE, and MLP-Mixer, five classic classifiers, to classify the dataset; the average accuracy rates were 76.75%, 78.47%, 78.07%, 75.80%, and 81.06%. This method effectively transforms human design knowledge into machine-understandable structured knowledge. There is a symmetric transformation of knowledge in the computer-aided design process, providing a reference for machine learning to deal with abstract style problems.

Funder

National Key R&D Program of China

two bath of 2021 MOE of PRC Industry–University Collaborative Program

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference26 articles.

1. Design of the automobile marketing system based on the big data;Lv;Proceedings of the International Conference on Big Data Analytics for Cyber-Physical-Systems,2019

2. Balancing homogeneity and heterogeneity in design exploration by synthesizing novel design alternatives based on genetic algorithm and strategic styling decision

3. A methodology for brand feature establishment based on the decomposition and reconstruction of a feature curve

4. Automobile style evaluation based on eye tracking;Zhaolin;J. Tsinghua Univ. (Sci. Technol.),2015

5. A machine learning–based framework for analyzing car brand styling

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3