Author:
Fu Yunmei,Dong Yanhui,Xie Yueqing,Xu Zhifang,Wang Liheng
Abstract
Floodplain wetlands are of great importance in the entire river and floodplain ecosystems. Understanding the hydrological processes of floodplain wetlands is fundamental to study the changes in wetlands caused by climate change and human activities. In this study, floodplain wetlands along the middle reach of the Yellow River were selected as a study area. The hydrological processes and the interactions between the river and the underlying aquifer were investigated by combining remote sensing, hydraulic monitoring, and numerical modeling. Wetland areas from 2014 to 2019 were extracted from Landsat 8 remote sensing images, and their correlation with the river runoff was analyzed. The results indicate that the river flow had a limited impact on the wetland size and so did groundwater levels, due to the strong reliance of wetland vegetation on water levels. Based on hydrological and hydrogeological conditions, a surface water–groundwater coupled numerical model was established. The comparison and correlation analysis between the monitored groundwater head and the simulated river stage also show that river flow did not play a first-order role in controlling the groundwater levels of wetlands in the study area. The simulation results also suggest that it is the regional groundwater flow that mainly sustains shallow groundwater of floodplain wetlands in the study area. The floodplain wetland of the study area was dynamic zones between the regional groundwater and river, the contrasting pattern of hydrological regimes on both banks of the Yellow River was due to a combination of regional groundwater flow and topography.
Funder
Youth Innovation Promotion Association CAS
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献