The Field-Induced Stop-Bands and Lasing Modes in CLC Layers with Deformed Lying Helix

Author:

Palto

Abstract

Waveguide optical properties of a cholesteric liquid crystal (CLC) layer with a deformed lying helix (DLH) have been studied by numerical simulations using the finite difference time domain method. The DLH structure, when the helix’s axis is oriented in plane of a CLC layer, is induced by an electric field in a virtual CLC cell with periodic (planar/homeotropic) boundary conditions at one of the alignment surfaces. This in-plane helical structure is stable only in a permanently applied electric field providing the helix deformation. In this work the polarized light reflectance spectra have been studied at different electric fields and light impingement into a waveguide formed by the DLH layer. It is found that for light propagating along the helix axis the reflectance spectrum has multiple stop-bands centred at wavelengths , which is different from set of bands located at , and characteristic of CLC spectra for the Grandjean-plane textures subjected to distortion by an electric or magnetic field perpendicular to the helix axis, where j is a natural number, p is the helix pitch and is the average refractive index. Each of the higher order (j > 1) bands consists of three polarization-dependent sub-bands. In the case of an amplifying CLC DLH layer, depending on an extent of the helix deformation, the lasing modes can be excited at different edges of the sub-bands. While at the strongest deformation the lasing is preferable at the edges of the central sub-band; a lower extent of deformation makes favourable conditions for the lasing at edges of the two other sub-bands.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3