Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton

Author:

Zhou Tiancheng,Zhou Zhijie,Zhang Hanwen,Chen WenbinORCID

Abstract

Researchers have made advances in reducing the metabolic rate of both walking and running by modulating mono-articular energy with exoskeletons. However, how to modulate multiarticular energy with exoskeletons to improve the energy economy of both walking and running is still a challenging problem, due to the lack of understanding of energy transfer among human lower-limb joints. Based on the study of the energy recycling and energy transfer function of biarticular muscles, we proposed a hip–knee unpowered exoskeleton that emulates and reinforces the function of the hamstrings and rectus femoris in different gait phases. The biarticular exo-tendon of the exoskeleton assists hamstrings to recycle the kinetic energy of the leg swing while providing hip extension torque in the swing phase. In the following stance phase, the exo-tendon releases the stored energy to assist the co-contraction of gluteus maximus and rectus femoris for both hip extension and knee extension, thus realizing the phased modulation of hip and knee joint energy. The metabolic rate of both walking (1.5 m/s) and running (2.5 m/s) can be reduced by 6.2% and 4.0% with the multiarticular energy modulation of a hip–knee unpowered exoskeleton, compared to that of walking and running without an exoskeleton. The bio-inspired design method of this study may inspire people to develop devices that assist multiple gaits in the future.

Funder

National Natural Science Foundation of China

Program for HUST Academic Frontier Youth Team

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3