Reducing Humidity Response of Gas Sensors for Medical Applications: Use of Spark Discharge Synthesis of Metal Oxide Nanoparticles
Author:
Vasiliev Alexey,Varfolomeev Andrey,Volkov Ivan,Simonenko Nikolay,Arsenov Pavel,Vlasov Ivan,Ivanov Victor,Pislyakov Alexander,Lagutin Alexander,Jahatspanian Igor,Maeder Thomas
Abstract
The application of gas sensors in breath analysis is an important trend in the early diagnostics of different diseases including lung cancer, ulcers, and enteric infection. However, traditional methods of synthesis of metal oxide gas-sensing materials for semiconductor sensors based on wet sol-gel processes give relatively high sensitivity of the gas sensor to changing humidity. The sol-gel process leading to the formation of superficial hydroxyl groups on oxide particles is responsible for the strong response of the sensing material to this factor. In our work, we investigated the possibility to synthesize metal oxide materials with reduced sensitivity to water vapors. Dry synthesis of SnO2 nanoparticles was implemented in gas phase by spark discharge, enabling the reduction of the hydroxyl concentration on the surface and allowing the production of tin dioxide powder with specific surface area of about 40 m2/g after annealing at 610 °C. The drop in sensor resistance does not exceed 20% when air humidity increases from 40 to 100%, whereas the response to 100 ppm of hydrogen is a factor of 8 with very short response time of about 1 s. The sensor response was tested in mixtures of air with hydrogen, which is the marker of enteric infections and the marker of early stage fire, and in a mixture of air with lactate (marker of stomach cancer) and ammonia gas (marker of Helicobacter pylori, responsible for stomach ulcers).
Funder
Ministry of Education and Science of the Russian Federation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference32 articles.
1. http://www.figaro.co.jp/en/product/entry/tgs2610-c00.html
2. http://www.optosense.ru/ru/products/mipex-02-infrared-gas-sensors.html
3. https://www.sgxsensortech.com/products-services/industrial-safety/mems-pellistor/
4. http://products.baseline-mocon.com/category/hydrocarbon-analyzers
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献