An Assessment of Anthropogenic CO2 Emissions by Satellite-Based Observations in China

Author:

Yang Shaoyuan,Lei Liping,Zeng ZhaochengORCID,He Zhonghua,Zhong Hui

Abstract

Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas and its concentration in atmosphere has been increasing rapidly due to the increase of anthropogenic CO2 emissions. Quantifying anthropogenic CO2 emissions is essential to evaluate the measures for mitigating climate change. Satellite-based measurements of greenhouse gases greatly advance the way of monitoring atmospheric CO2 concentration. In this study, we propose an approach for estimating anthropogenic CO2 emissions by an artificial neural network using column-average dry air mole fraction of CO2 (XCO2) derived from observations of Greenhouse gases Observing SATellite (GOSAT) in China. First, we use annual XCO2 anomalies (dXCO2) derived from XCO2 and anthropogenic emission data during 2010–2014 as the training dataset to build a General Regression Neural Network (GRNN) model. Second, applying the built model to annual dXCO2 in 2015, we estimate the corresponding emission and verify them using ODIAC emission. As a results, the estimated emissions significantly demonstrate positive correlation with that of ODIAC CO2 emissions especially in the areas with high anthropogenic CO2 emissions. Our results indicate that XCO2 data from satellite observations can be applied in estimating anthropogenic CO2 emissions at regional scale by the machine learning. This developed method can estimate carbon emission inventory in a data-driven way. In particular, it is expected that the estimation accuracy can be further improved when combined with other data sources, related CO2 uptake and emissions, from satellite observations.

Funder

CAS Earth Big Data Science Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Greenhouse Gas Bulletin, No. 13https://public.wmo.int/en/media/press-release/greenhouse-gas-concentrations-surge-new-record

2. Summary for Policymakers,2013

3. Summary for Policymakers,2018

4. Retrieval algorithm for CO<sub>2</sub> and CH<sub>4</sub> column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite

5. Contributions of the Orbiting Carbon Observatory (OCO) to the detection of anthropogenic CO2 emissions;Crisp;ADS Abstr. Serv.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3