Deep Learning for Joint Adaptations of Transmission Rate and Payload Length in Vehicular Networks

Author:

Elwekeil MohamedORCID,Wang Taotao,Zhang Shengli

Abstract

Recently, vehicular networks have emerged to facilitate intelligent transportation systems (ITS). They enable vehicles to communicate with each other in order to provide various services such as traffic safety, autonomous driving, and entertainments. The vehicle-to-vehicle (V2V) communication channel is doubly selective, where the channel changes within the transmission bandwidth and the frame duration. This necessitates robust algorithms to provide reliable V2V communications. In this paper, we propose a scheme that provides joint adaptive modulation, coding and payload length selection (AMCPLS) for V2V communications. Our AMCPLS scheme selects both the modulation and coding scheme (MCS) and the payload length of transmission frames for V2V communication links, according to the V2V channel condition. Our aim is to achieve both reliability and spectrum efficiency. Our proposed AMCPLS scheme improves the V2V effective throughput performance while satisfying a predefined frame error rate (FER). Furthermore, we present a deep learning approach that exploits deep convolutional neural networks (DCNN) for implementing the proposed AMCPLS. Simulation results reveal that the proposed DCNN-based AMCPLS approach outperforms other competing machine learning algorithms such as k-nearest neighbors (k-NN) and support vector machines (SVM) in terms of FER, effective throughput, and prediction time.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference26 articles.

1. Vehicular networks using the IEEE 802.11p standard: An experimental analysis

2. A Survey of Vehicle to Everything (V2X) Testing

3. IEEE Standard for Information Technology-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments,2010

4. Adaptive Bit-Interleaved Coded OFDM With Reduced Feedback Information

5. Exact pairwise error probability for block-fading MIMO OFDM systems;Li;IEEE Trans. Veh. Technol.,2008

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3