Understanding the Evolutionary Ecology of host–pathogen Interactions Provides Insights into the Outcomes of Insect Pest Biocontrol

Author:

Páez David J.,Fleming-Davies Arietta E.ORCID

Abstract

The use of viral pathogens to control the population size of pest insects has produced both successful and unsuccessful outcomes. Here, we investigate whether those biocontrol successes and failures can be explained by key ecological and evolutionary processes between hosts and pathogens. Specifically, we examine how heterogeneity in pathogen transmission, ecological and evolutionary tradeoffs, and pathogen diversity affect insect population density and thus successful control. We first review the existing literature and then use numerical simulations of mathematical models to further explore these processes. Our results show that the control of insect densities using viruses depends strongly on the heterogeneity of virus transmission among insects. Overall, increased heterogeneity of transmission reduces the effect of viruses on insect densities and increases the long-term stability of insect populations. Lower equilibrium insect densities occur when transmission is heritable and when there is a tradeoff between mean transmission and insect fecundity compared to when the heterogeneity of transmission arises from non-genetic sources. Thus, the heterogeneity of transmission is a key parameter that regulates the long-term population dynamics of insects and their pathogens. We also show that both heterogeneity of transmission and life-history tradeoffs modulate characteristics of population dynamics such as the frequency and intensity of “boom–bust" population cycles. Furthermore, we show that because of life-history tradeoffs affecting the transmission rate, the use of multiple pathogen strains is more effective than the use of a single strain to control insect densities only when the pathogen strains differ considerably in their transmission characteristics. By quantifying the effects of ecology and evolution on population densities, we are able to offer recommendations to assess the long-term effects of classical biocontrol.

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Reference112 articles.

1. Natural Enemies: An Introduction to Biological Control;Hajek,2004

2. Classical biological control of insect pests of trees: facts and figures

3. Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database

4. Biological control of insect pests by insect parasitoids and predators: The BIOCAT;Greathead;Biocontrol,1992

5. Risks of species introduced for biological control

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3