Protein Backbone and Average Particle Dynamics in Reconstituted Discoidal and Spherical HDL Probed by Hydrogen Deuterium Exchange and Elastic Incoherent Neutron Scattering

Author:

Gogonea Valentin,Peters JudithORCID,Gerstenecker Gary S.,Topbas Celalettin,Hou Liming,Combet Jérôme,DiDonato Joseph A.ORCID,Smith Jonathan D.ORCID,Rye Kerry-Anne,Hazen Stanley L.

Abstract

Lipoproteins are supramolecular assemblies of proteins and lipids with dynamic characteristics critically linked to their biological functions as plasma lipid transporters and lipid exchangers. Among them, spherical high-density lipoproteins are the most abundant forms of high-density lipoprotein (HDL) in human plasma, active participants in reverse cholesterol transport, and associated with reduced development of atherosclerosis. Here, we employed elastic incoherent neutron scattering (EINS) and hydrogen-deuterium exchange mass spectrometry (HDX-MS) to determine the average particle dynamics and protein backbone local mobility of physiologically competent discoidal and spherical HDL particles reconstituted with human apolipoprotein A-I (apoA-I). Our EINS measurements indicated that discoidal HDL was more dynamic than spherical HDL at ambient temperatures, in agreement with their lipid-protein composition. Combining small-angle neutron scattering (SANS) with contrast variation and MS cross-linking, we showed earlier that the most likely organization of the three apolipoprotein A-I (apoA-I) chains in spherical HDL is a combination of a hairpin monomer and a helical antiparallel dimer. Here, we corroborated those findings with kinetic studies, employing hydrogen-deuterium exchange mass spectrometry (HDX-MS). Many overlapping apoA-I digested peptides exhibited bimodal HDX kinetics behavior, suggesting that apoA-I regions with the same amino acid composition located on different apoA-I chains had different conformations and/or interaction environments.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3