Design, Synthesis, and Evaluation of Novel 2-Methoxyestradiol Derivatives as Apoptotic Inducers through an Intrinsic Apoptosis Pathway

Author:

Sheng Li-Xin,Zhang Jiang-Yu,Li Li,Xie Xiao,Wen Xiao-An,Cheng Ke-GuangORCID

Abstract

In order to discover novel derivatives in the anti-tumor field, reported anti-tumor pharmacophores (uridine, uracil, and thymine) were combined with 2-methoxyestradiol, which has been characterized as having excellent biological properties in terms of anti-tumor activity. Thus, 20 hybrids were synthesized through etherification at the 17β-OH or 3-phenolic hydroxyl group of 2-methoxyestradiol, and evaluated for their biological activities against the human breast adenocarcinoma MCF-7 cell lines, human breast cancer MDA-MB-231 cell lines, and the normal human liver L-O2 cell lines. As a result, all the uridine derivatives and single-access derivatives of uracil/thymine possessed good anti-proliferative activity against tested tumor cells (half maximal inhibitory concentration values from 3.89 to 19.32 µM), while only one dual-access derivative (21b) of thymine possessed good anti-proliferative activity (half maximal inhibitory concentration ≈ 25 µM). Among them, the uridine derivative 11 and the single-access derivative of uracil 12a possessed good anti-proliferative selectivity against tested tumor cells. Furthermore, basic mechanism studies revealed that hybrids 11 and 12a could induce apoptosis in MCF-7 cells through mitochondrial pathway. These hybrids induced morphological changes in MCF-7 cells, causing mitochondrial depolarization. These two hybrids also had the following effects: arrest of the cell cycle at the G2 phase; up regulation of Apaf-1, Bax, and cytochrome c; down regulation of Bcl-2 and Bcl-xL for both mRNA and protein; and increase of the expression for caspase-8 and -9. Finally, apoptotic effector caspase-3 was increased, which eventually caused nuclear apoptosis at least through an intrinsic pathway in the mitochondria. Additionally, hybrids 11 and 12a could specifically bind to estradiol receptor alpha in a dose-dependent manner.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3