The Unique Lipidomic Signatures of Saccharina latissima Can Be Used to Pinpoint Their Geographic Origin

Author:

Monteiro João P.,Rey FelisaORCID,Melo Tânia,Moreira Ana S. P.,Arbona Jean-François,Skjermo JorunnORCID,Forbord Silje,Funderud Jon,Raposo Diogo,Kerrison Philip D.,Perrineau Marie-Mathilde,Gachon Claire,Domingues PedroORCID,Calado RicardoORCID,Domingues M. RosárioORCID

Abstract

The aquaculture of macroalgae for human consumption and other high-end applications is experiencing unprecedented development in European countries, with the brown algae Saccharina latissima being the flag species. However, environmental conditions in open sea culture sites are often unique, which may impact the biochemical composition of cultured macroalgae. The present study compared the elemental compositions (CHNS), fatty acid profiles, and lipidomes of S. latissima originating from three distinct locations (France, Norway, and the United Kingdom). Significant differences were found in the elemental composition, with Norwegian samples displaying twice the lipid content of the others, and significantly less protein (2.6%, while French and UK samples contained 6.3% and 9.1%, respectively). The fatty acid profiles also differed considerably, with UK samples displaying a lower content of n-3 fatty acids (21.6%), resulting in a higher n-6/n-3 ratio. Regarding the lipidomic profile, samples from France were enriched in lyso lipids, while those from Norway displayed a particular signature of phosphatidylglycerol, phosphatidylinositol, and phosphatidylcholine. Samples from the UK featured higher levels of phosphatidylethanolamine and, in general, a lower content of galactolipids. These differences highlight the influence of site-specific environmental conditions in the shaping of macroalgae biochemical phenotypes and nutritional value. It is also important to highlight that differences recorded in the lipidome of S. latissima make it possible to pinpoint specific lipid species that are likely to represent origin biomarkers. This finding is relevant for future applications in the field of geographic origin traceability and food control.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3