Implementation of Disassembler on Microcontroller Using Side-Channel Power Consumption Leakage

Author:

Bae DaehyeonORCID,Ha Jaecheol

Abstract

With the development of 5G and network technology, the usage of IoT devices has become popular. Because most of these IoT devices can be controlled by an adversary away from the administrator, several security issues such as firmware dumping can arise. Firmware dumping is the cornerstone or goal of many types of hardware hacking. Therefore, many IoT device manufacturers adopt some protection mechanisms such as the restriction of hardware debuggers. However, several recent studies have shown that the operating instructions of an IoT device can be recovered through the profiling-based side-channel analysis. The Side-Channel-Based Disassembler (SCBD) refers to software that recovers instructions of the device only from the side-channel signal. The SCBD is powerful enough to defeat many firmware protection mechanisms. In this paper, we show how an adversary can build an instruction (opcode)-level disassembler using the power consumption signal of commercial microcontrollers (MCUs) such as the 8-bit ATxmega128 and 32-bit STM32F0. To implement the SCBD, we elaborately constructed the instruction template considering the pipeline of the target MCUs through instruction sequence analysis. Furthermore, we preprocessed the side-channel signals using the Continuous Wavelet Transform (CWT) for noise reduction and Kullback-Leibler Divergence (KLD) for instruction feature extraction. Our experimental results show that the machine-learning-based instruction disassembling models can recover the operating instructions with an accuracy of about 91.9% and 98.6% for the ATxmega128 and STM32F0, respectively. Furthermore, we achieved an accuracy of 77% and 96.5% in a cross-board validation.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korean government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference25 articles.

1. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems;Kocher;Proceedings of the CRYPTO’96,1996

2. PLATYPUS: Software-based power side-channel attacks on x86;Lipp;Proceedings of the 2021 IEEE Symposium on Security and Privacy,2021

3. Let’s Take it Offline: Boosting Brute-Force Attacks on iPhone’s User Authentication through SCA

4. Cost and effectiveness of TrustZone defense and side-channel attack on ARM platform;Liu;J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl.,2020

5. A study on the SCA trends for application to IoT devices;Sim;J. Internet Serv. Inf. Secur.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3