Conductance-Based Interface Detection for Multi-Phase Pipe Flow

Author:

Wang ShiyaoORCID,Corredor Garcia Jesus Leonardo,Davidson Jonathan,Nichols AndrewORCID

Abstract

Sediment and flow depth monitoring in sewers is important for informing flow models and for predicting and mitigating against sewer blockage formation and surcharge. In this study, a novel sensor based on conductance measurement has been developed and tested under a laboratory environment and validated by a finite-element model. The relative conductance is measured between pairs of adjacent electrodes to provide a conductance profile along the sensor length. A piecewise linear relationship between conductance and electrode length was derived and the interface positions between sediment, water, and air can be determined from the profile. The results demonstrated that the root mean square error of the model and the measured interface level are within 1.4% and 2.6% of sensor’s measurement range. An error distribution of interface height shows that all anticipated errors are within the resolution of the electrode length increments. Furthermore, it was found that the conductivity of the measured medium is proportional to the gradient of the linear relationship of conductance and electrode length. It could therefore prove a valuable new tool for the accurate quantification of sediment and flow levels in sewer conduits, coastal environments, drainage systems for transport networks, and other industrial or academic applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

1. Sediment Transport in Sewers;Celestini,2007

2. Corrosion and odor management in sewer systems

3. Management of Sewer Sediments;Ashley,2003

4. Solids in Sewers: Characteristics, Effects and Control of Sewer Solids and Associated Pollutants

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3