Spatial Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Sediments from Dachan Bay, Shenzhen City

Author:

Huang Wenjing1ORCID,Liu Beibei1,Zhao Hui1234,Zhao Lirong1,Zhang Jibiao1ORCID

Affiliation:

1. College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China

2. Cooperative Research Center for Offshore Marine Environmental Change, Guangdong Ocean University, Zhanjiang 524088, China

3. Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China

4. Research Center for Coastal Evironmental Protection and Ecological Resilience, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

The study investigated the composition and content of Σ15PAH in the surface and core sediments from Dachan Bay (DCB) in Shenzhen city and discussed the effects of urban development and regional energy structure on the marine environment through the spatial distribution, vertical profile, and sources of Σ15PAH. The results indicated that the concentrations of Σ15PAH in the sediments of DCB ranged between 299 ng/g and 2336 ng/g in the surface sediments and between 65 ng/g and 994 ng/g in the core sediments. The horizontal spatial distribution of PAHs content with decreasing concentrations from the coastal to central areas implied the land-based input of PAHs. The vertical profile of high PAHs concentration in 0 cm–60 cm suggested that the PAHs pollution is attributed to the urban development of Shenzhen since 1950, especially after the 1980s. According to features of the low molecular weight (LMW)/high molecular weight (HMW), PAHs diagnostic ratios and their relationships with total organic carbon (TOC) and oil, the pyrogenic PAHs were mainly from the combustion of petroleum and byproducts in the surface and 0 cm–60 cm sediments but from the combustion of biomass in 60 cm–190 cm sediments, which corresponded with the variation of energy structure in surrounding areas. This study suggested that urban development and regional energy structure have a great impact on PAHs distribution in DCB and further controls of land-based pollutant emissions are still needed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3