Exploring the Molecular Underpinnings of Cancer-Causing Oncohistone Mutants Using Yeast as a Model

Author:

Zhang Xinran1ORCID,Fawwal Dorelle V.123,Spangle Jennifer M.24ORCID,Corbett Anita H.14,Jones Celina Y.14ORCID

Affiliation:

1. Department of Biology, Emory University, Atlanta, GA 30322, USA

2. Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA

3. Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322, USA

4. Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA

Abstract

Understanding the molecular basis of cancer initiation and progression is critical in developing effective treatment strategies. Recently, mutations in genes encoding histone proteins that drive oncogenesis have been identified, converting these essential proteins into “oncohistones”. Understanding how oncohistone mutants, which are commonly single missense mutations, subvert the normal function of histones to drive oncogenesis requires defining the functional consequences of such changes. Histones genes are present in multiple copies in the human genome with 15 genes encoding histone H3 isoforms, the histone for which the majority of oncohistone variants have been analyzed thus far. With so many wildtype histone proteins being expressed simultaneously within the oncohistone, it can be difficult to decipher the precise mechanistic consequences of the mutant protein. In contrast to humans, budding and fission yeast contain only two or three histone H3 genes, respectively. Furthermore, yeast histones share ~90% sequence identity with human H3 protein. Its genetic simplicity and evolutionary conservation make yeast an excellent model for characterizing oncohistones. The power of genetic approaches can also be exploited in yeast models to define cellular signaling pathways that could serve as actionable therapeutic targets. In this review, we focus on the value of yeast models to serve as a discovery tool that can provide mechanistic insights and inform subsequent translational studies in humans.

Funder

R21

NSF CAREER

MIRA

T32

IRACDA

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3