Kazachstania pintolopesii in Blood and Intestinal Wall of Macrophage-Depleted Mice with Cecal Ligation and Puncture, the Control of Fungi by Macrophages during Sepsis

Author:

Hiengrach Pratsanee123,Chindamporn Ariya45,Leelahavanichkul Asada456

Affiliation:

1. Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand

2. Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand

3. Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand

4. Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

5. Mycology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

6. Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

Although macrophage depletion is a possible emerging therapeutic strategy for osteoporosis and melanoma, the lack of macrophage functions can lead to inappropriate microbial control, especially the regulation of intestinal microbiota. Cecal ligation and puncture (CLP) sepsis was performed in regular mice and in mice with clodronate-induced macrophage depletion. Macrophage depletion significantly increased the mortality and severity of sepsis-CLP mice, partly through the increased fecal Ascomycota, especially Kazachstania pintolopesii, with polymicrobialbacteremia (Klebsiella pneumoniae, Enterococcus faecalis, and Acinetobacter radioresistens). Indeed, macrophage depletion with sepsis facilitated gut dysbiosis that directly affected gut permeability as yeast cells were located and hidden in the colon crypts. To determine the interactions of fungal molecules on bacterial abundance, the heat-kill lysate of fungi (K. pintolopesii and C. albicans) and purified (1→3)-β-d-glucan (BG; a major component of the fungal cell wall) were incubated with bacteria that were isolated from the blood of macrophage-depleted mice. There was enhanced cytokine production of enterocytes (Caco-2) after the incubation of the lysate of K. pintolopesii (isolated from sepsis mice), the lysate of C. albicans (extracted from sepsis patients), and BG, together with bacterial lysate. These data support a possible influence of fungi in worsening sepsis severity. In conclusion, macrophage depletion enhanced K. pintolopesii in feces, causing the overgrowth of fecal pathogenic bacteria and inducing a gut permeability defect that additively worsened sepsis severity. Hence, the fecal fungus could be spontaneously elevated and altered in response to macrophage-depleted therapy, which might be associated with sepsis severity.

Funder

National Research Council of Thailand

Program Management Unit for Human Resources & Institutional Development, Research and Innovation

TSRI Fund

Rachadapisek Sompote Endowment Fund

HSRI

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3