RetinaViT: Efficient Visual Backbone for Online Video Streams

Author:

Suzuki Tomoyuki1ORCID,Aoki Yoshimitsu1ORCID

Affiliation:

1. Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Kanagawa, Japan

Abstract

In online video understanding, which has a wide range of real-world applications, inference speed is crucial. Many approaches involve frame-level visual feature extraction, which often represents the biggest bottleneck. We propose RetinaViT, an efficient method for extracting frame-level visual features in an online video stream, aiming to fundamentally enhance the efficiency of online video understanding tasks. RetinaViT is composed of efficiently approximated Transformer blocks that only take changed tokens (event tokens) as queries and reuse the already processed tokens from the previous timestep for the others. Furthermore, we restrict keys and values to the spatial neighborhoods of event tokens to further improve efficiency. RetinaViT involves tuning multiple parameters, which we determine through a multi-step process. During model training, we randomly vary these parameters and then perform black-box optimization to maximize accuracy and efficiency on the pre-trained model. We conducted extensive experiments on various online video recognition tasks, including action recognition, pose estimation, and object segmentation, validating the effectiveness of each component in RetinaViT and demonstrating improvements in the speed/accuracy trade-off compared to baselines. In particular, for action recognition, RetinaViT built on ViT-B16 reduces inference time by approximately 61.9% on the CPU and 50.8% on the GPU, while achieving slight accuracy improvements rather than degradation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3