Dynamic Forecasting and Operation Mechanism of Reservoir Considering Multi-Time Scales

Author:

Han Chengyu1,Guo Zhen2ORCID,Sun Xiaomei2ORCID,Zhang Yuquan34

Affiliation:

1. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. School of Water Conservancy and Hydropower, Xi’an University of Technology, Xi’an 710048, China

3. State Grid Xi’an Electric Power Supply Company, Xi’an 710049, China

4. School of Management, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

This paper proposes a feedback, rolling and adaptive operation decision-making mechanism for coupling and nesting of time scales. It is aimed at the change of time scale and the dynamics in the operation process, considering the relationship between operation period and multi-time scales. The key point is to integrate forecasting and operation in order to adapt to the multi-time scales dynamic change in the operation process. The operation process is divided into different time scales; forecasting and operation model method libraries are constructed, and the progressive updating and nesting mechanism are used to realize the process dynamic operation, according to the regulation period or operation period of the reservoir. Taking the Miyun Reservoir in Beijing, China as the research object, the operation mechanism is integrated into the operation process, and the complex forecasting operation and control mechanism are integrated, based on the integrated platform and using modern information technology. The forecasting and operation method uses classic different models, which can be selected based on different goals. The forecasting inflow is used as input, and the output is the water distribution plan, more importantly, the mechanism in the operation process is the key point. This is a rolling modification of the inflow process in the next stage, and the operation plan also changes accordingly. The feasibility, effectiveness, rationality and flexibility of the reservoir dynamic and adaptive operation are verified, so that the reservoir operation is dynamically changing and adapting to the changing demand. The proposed operation mechanism has scientific value and guiding significance to improve the reservoir operation theory, and it provides decision support for the actual reservoir operation and operation business.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3