Web-Informed-Augmented Fake News Detection Model Using Stacked Layers of Convolutional Neural Network and Deep Autoencoder

Author:

Ali Abdullah Marish1ORCID,Ghaleb Fuad A.23ORCID,Mohammed Mohammed Sultan4ORCID,Alsolami Fawaz Jaber1ORCID,Khan Asif Irshad1ORCID

Affiliation:

1. Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Department of Computer Science, Faculty of Computing, Universiti Teknologi, Malaysia, Johor Bahru 81310, Malaysia

3. Department of Computer Engineering and Electronics, Sanaá Community College, Sanaá 5695, Yemen

4. Faculty of Electrical Engineering, Universiti Teknologi, Malaysia, Johor Bahru 81310, Malaysia

Abstract

Today, fake news is a growing concern due to its devastating impacts on communities. The rise of social media, which many users consider the main source of news, has exacerbated this issue because individuals can easily disseminate fake news more quickly and inexpensive with fewer checks and filters than traditional news media. Numerous approaches have been explored to automate the detection and prevent the spread of fake news. However, achieving accurate detection requires addressing two crucial aspects: obtaining the representative features of effective news and designing an appropriate model. Most of the existing solutions rely solely on content-based features that are insufficient and overlapping. Moreover, most of the models used for classification are constructed with the concept of a dense features vector unsuitable for short news sentences. To address this problem, this study proposed a Web-Informed-Augmented Fake News Detection Model using Stacked Layers of Convolutional Neural Network and Deep Autoencoder called ICNN-AEN-DM. The augmented information is gathered from web searches from trusted sources to either support or reject the claims in the news content. Then staked layers of CNN with a deep autoencoder were constructed to train a probabilistic deep learning-base classifier. The probabilistic outputs of the stacked layers were used to train decision-making by staking multilayer perceptron (MLP) layers to the probabilistic deep learning layers. The results based on extensive experiments challenging datasets show that the proposed model performs better than the related work models. It achieves 26.6% and 8% improvement in detection accuracy and overall detection performance, respectively. Such achievements are promising for reducing the negative impacts of fake news on communities.

Funder

Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3