Bubble Sliding Characteristics and Dynamics of R134a during Subcooled Boiling Flow in a Narrow Gap

Author:

Yu Bo12,Wang Jinfeng1234ORCID,Xie Jing1234ORCID,Wang Bingjun12,Wang Fei1,Deng Meng1

Affiliation:

1. College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China

2. Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China

3. National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China

4. Quality Supervision, Inspection and Testing Center for Cold Storage and Refrigeration Equipment, Ministry of Agriculture, Shanghai 201306, China

Abstract

The numerical method was used to study bubble sliding characteristics and dynamics of R134a during subcooled flow boiling in a narrow gap. In the numerical method, the volume of fraction (VOF) model, level set method, Lee phase change model and the SST k − ω turbulent model were adopted for the construction of the subcooled flow boiling model. In order to explore bubble sliding dynamics during subcooled flow boiling, the bubble sliding model was introduced. The bubble velocity, bubble departure diameter, sliding distance and bubble sliding dynamics were investigated at 0.2 to 5 m/s inlet velocities. The simulation results showed that the bubble velocity at the flow direction was the most important contribution to bubble velocity. Additionally, the bubble velocity of 12 bubbles mostly oscillated with time during the sliding process at 0.2 to 0.6 m/s inlet velocities, while the bubble velocity increased during the sliding process due to the bubble having had a certain inertia at 2 to 5 m/s inlet velocities. It was also found that the average bubble velocity in flow direction accounted for about 80% of the mainstream velocities at 0.2 to 5 m/s. In the investigation of bubble sliding distance and departure diameter, it was concluded that the ratio of the maximum sliding distance to the minimum sliding distance was close to two at inlet velocities of 0.3 to 5 m/s. Moreover, with increasing inlet velocity, the average sliding distance increased significantly. The average bubble departure diameter obviously increased from 0.2 to 0.5 m/s inlet velocity and greatly reduced after 0.6 m/s. Finally, the investigations of the bubble sliding dynamics showed that the surface tension dominated the bubble sliding process at 0.2 to 0.6 m/s inlet velocities. However, the drag force dominated the bubble sliding process at 2 to 5 m/s inlet velocities.

Funder

National Key R&D Program of China

Science and Technology Innovation Action Plan of the Shanghai Science and Technology Commission

Public Service Platform Project of the Shanghai Science and Technology Commission

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3