Efficient and Low Color Information Dependency Skin Segmentation Model

Author:

You Hojoon1ORCID,Lee Kunyoung2ORCID,Oh Jaemu1,Lee Eui Chul3ORCID

Affiliation:

1. Department of AI & Informatics, Graduate School, Sangmyung University, Seoul 03016, Republic of Korea

2. Department of Computer Science, Graduate School, Sangmyung University, Seoul 03016, Republic of Korea

3. Department of Human-Centered Artificial Intelligence, Graduate School, Sangmyung University, Seoul 03016, Republic of Korea

Abstract

Skin segmentation involves segmenting the human skin region in an image. It is a preprocessing technique mainly used in many applications such as face detection, hand gesture recognition, and remote biosignal measurements. As the performance of skin segmentation directly affects the performance of these applications, precise skin segmentation methods have been studied. However, previous skin segmentation methods are unsuitable for real-world environments because they rely heavily on color information. In addition, deep-learning-based skin segmentation methods incur high computational costs, even though skin segmentation is mainly used for preprocessing. This study proposes a lightweight skin segmentation model with a high performance. Additionally, we used data augmentation techniques that modify the hue, saturation, and values, allowing the model to learn texture or contextual information better without relying on color information. Our proposed model requires 1.09M parameters and 5.04 giga multiply-accumulate. Through experiments, we demonstrated that our proposed model shows high performance with an F-score of 0.9492 and consistent performance even for modified images. Furthermore, our proposed model showed a fast processing speed of approximately 68 fps, based on 3 × 512 × 512 images and an NVIDIA RTX 2080TI GPU (11GB VRAM) graphics card.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3