PLDH: Pseudo-Labels Based Deep Hashing

Author:

Liu Huawen1ORCID,Yin Minhao2,Wu Zongda1,Zhao Liping1,Li Qi1,Zhu Xinzhong3,Zheng Zhonglong3

Affiliation:

1. Department of Computer Science, Shaoxing University, Shaoxing 312000, China

2. School of Information Science and Technology, Northeast Normal University, Changchun 130024, China

3. School of Computer Science and Technology, Zhejiang Normal University, Jinhua 311231, China

Abstract

Deep hashing has received a great deal of attraction in large-scale data analysis, due to its high efficiency and effectiveness. The performance of deep hashing models heavily relies on label information, which is very expensive to obtain. In this work, a novel end-to-end deep hashing model based on pseudo-labels for large-scale data without labels is proposed. The proposed hashing model consists of two major stages, where the first stage aims to obtain pseudo-labels based on deep features extracted by a pre-training deep convolution neural network. The second stage generates hash codes with high quality by the same neural network in the previous stage, coupled with an end-to-end hash layer, whose purpose is to encode data into a binary representation. Additionally, a quantization loss is introduced and interwound within these two stages. Evaluation experiments were conducted on two frequently-used image collections, CIFAR-10 and NUS-WIDE, with eight popular shallow and deep hashing models. The experimental results show the superiority of the proposed method in image retrieval.

Funder

Natural Science Foundation (NSF) of China

Natural Science Foundation of Zhejiang Province

Outstanding Talents of “Ten Thousand Talents Plan” in Zhejiang Province

Science and Technology Plan Project in Basic Public Welfare class of Shaoxing city

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3