Logarithmic Coefficients Inequality for the Family of Functions Convex in One Direction

Author:

Analouei Adegani Ebrahim1ORCID,Motamednezhad Ahmad1ORCID,Jafari Mostafa2,Bulboacă Teodor3ORCID

Affiliation:

1. Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood P.O. Box 316-36155, Iran

2. Department of Mathematics, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad 66414, Iran

3. Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania

Abstract

The logarithmic coefficients play an important role for different estimates in the theory of univalent functions. Due to the significance of the recent studies about the logarithmic coefficients, the problem of obtaining the sharp bounds for the modulus of these coefficients has received attention. In this research, we obtain sharp bounds of the inequality involving the logarithmic coefficients for the functions of the well-known class G and investigate a majorization problem for the functions belonging to this family. To prove our main results, we use the Briot–Bouquet differential subordination obtained by J.A. Antonino and S.S. Miller and the result of T.J. Suffridge connected to the Alexander integral. Combining these results, we give sharp inequalities for two types of sums involving the modules of the logarithmical coefficients of the functions of the class G indicating also the extremal function. In addition, we prove an inequality for the modulus of the derivative of two majorized functions of the class G, followed by an application.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference30 articles.

1. On Brennan’s conjecture for a special class of functions;Kayumov;Math. Notes,2005

2. Milin, I.M. (1977). Translations of Mathematical Monographs, American Mathematical Society.

3. A remark on the odd-schlicht functions;Robertson;Bull. Am. Math. Soc.,1936

4. Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitkreises vermitteln;Bieberbach;Sitzungsberichte Preuss. Akad. Wiss.,1916

5. A proof of the Bieberbach conjecture;Acta Math.,1985

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3