Modeling of the Electronic Structure of Semiconductor Nanoparticles

Author:

Novozhilov Vasily B.12ORCID,Bodneva Valeria L.2,Kurmangaleev Kairat S.2ORCID,Lidskii Boris V.2,Posvyanskii Vladimir S.2,Trakhtenberg Leonid I.23

Affiliation:

1. Institute of Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia

2. N.N. Semenov Federal Research Centre of Chemical Physics, Russian Academy of Sciences, 4 Kosygina St., Building 1, Moscow 119991, Russia

3. Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia

Abstract

This paper deals with the mathematical modeling of the electronic structure of semiconductor particles. Mathematically, the task is reduced to a joint solution of the problem of free energy minimization and the set of chemical kinetic equations describing the processes at the surface of a nanoparticle. The numerical modeling of the sensor effect is carried out in two steps. First, the number of charged oxygen atoms on the surface of the nanoparticle NO− is determined. This value is found by solving a system of nonlinear algebraic equations, where the unknowns are the stationary points of this system describing the processes on the surface of a nanoparticle. The specific form of such equations is determined by the type of nanoparticles and the mechanism of chemical reactions on the surface. The second step is to calculate the electron density inside the nanoparticle (nc(r)), which gives the minimum free energy. Mathematically, this second step reduces to solving a boundary value problem for a nonlinear integro-differential equation. The calculation results are compared with experimental data on the sensor effect.

Funder

Ministry of Education and Science of the Russian Federation for N.N. Semenov Federal Research Centre of Chemical Physics, Russian Academy of Sciences

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference39 articles.

1. Nicolais, L., and Carotenuto, G. (2005). Metal/Polymer Nanocomposites, John Wiley and Sons.

2. Trakhtenberg, L.I., Lin, S.H., and Ilegbusi, O.J. (2007). Physico-Chemical Phenomena in Thin Films and at Solid Surfaces, Elsevier Inc.

3. Exciton-Plasmon Interactions in Metal-Semiconductor Nanostructures;Achermann;J. Phys. Chem. Lett.,2010

4. Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals;Garcia;Nano Lett.,2011

5. Plasmonics for Pulsed-Laser Cell Nanosurgery: Fundamentals and applications;Boulais;J. Photochem. Photobiol. C,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3