Affiliation:
1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
2. College of Computer Science, Chongqing University, Chongqing 400044, China
Abstract
In practice, the cross-domain transfer of data distribution and the sample imbalance of fault status are inevitable, but one or both are often ignored, which restricts the adaptability and classification accuracy of the generated fault diagnosis (FD) model. Accordingly, an entropy-optimized method is proposed in this paper based on an unsupervised domain-adaptive technique to enhance FD model training. For the training, pseudosamples and labels corresponding to the target samples are generated through data augmentation and self-training strategies to diminish the distribution discrepancy between the source and target domains. Meanwhile, an adaptive conditional entropy loss function is developed to improve the data quality of the semisupervised learning, with which reliable samples are generated for the training. According to the experiment results, compared with other state-of-the-art algorithms, our method can achieve significant accuracy improvement in rolling bearing FD. Typically, the accuracy improvement compared with the baseline Convolutional Neural Network (CNN) is achieved by over 13.23%.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
State Key Laboratory of Mechanical Transmissions
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献