Odor-Specific Daily Rhythms in the Olfactory Sensitivity and Behavior of Aedes aegypti Mosquitoes

Author:

Eilerts Diane,VanderGiessen Morgen,Bose Elizabeth,Broxton Kyera,Vinauger Clément

Abstract

Many biological processes and behaviors in mosquitoes display rhythmic patterns, allowing for fine tuning to cyclic environmental conditions. In mosquitoes, vector-host interactions are primarily mediated by olfactory signals. Previous studies have established that, in the malaria vector Anopheles gambiae, rhythmic expression of odorant binding proteins and takeout proteins in the antenna resulted in a corresponding rhythm in olfactory sensitivity to relevant host odors. However, it remained unclear how rhythms observed in olfactory sensitivity affect or explain rhythms in behavioral output, which ultimately impacts disease transmission. In order to address this knowledge gap, we quantified and compared patterns in locomotor activity, olfactory sensitivity, and olfactory behaviors in adult female Aedes aegypti mosquitoes. Here, we demonstrate an odorant-specific modulation of olfactory sensitivity in Ae. aegypti, decoupled from rhythms in olfactory behavior. Additionally, behavioral assays performed herein represent the first evidence of a time-dependence of the olfactory activation of behavior in Ae. aegypti mosquitoes. Results suggest that olfactory behavior of Aedes mosquitoes is modulated at both the peripheral (antenna) and central levels. As such, this work serves as a foundation for future studies aimed at further understanding the neural and molecular mechanisms underlying behavioral plasticity.

Publisher

MDPI AG

Subject

Insect Science

Reference50 articles.

1. The circadian rhythm of flight activity in the mosquito Aedes aegypti (L.). The phase-setting effects of light-on and light-off;Taylor;J. Exp. Biol.,1969

2. The circadian flight activity of the mosquito Anopheles gambiae: Phase setting by the light regime;Jones;J. Exp. Biol.,1967

3. Changes in the circadian flight activity of the mosquito Anopheles stephensi associated with insemination, blood-feeding, oviposition and nocturnal light intensity

4. Phase-resetting a mosquito circadian oscillator

5. Daily oviposition patterns of the African malaria mosquito Anopheles gambiae Giles (Diptera: Culicidae) on different types of aqueous substrates

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3