Moisture Distribution in Sloping Black Soil Farmland during the Freeze–Thaw Period in Northeastern China

Author:

Zhao Xianbo,Xu Shiguo,Liu Tiejun,Qiu Pengpeng,Qin Guoshuai

Abstract

This paper outlines dynamics of near-surface hydrothermal processes and analyzes the characteristics of moisture distribution during the freeze–thaw period in a typical black soil zone around Harbin, Northeastern China, a region with a moderate depth of seasonally frozen ground and one of the most important granaries in China. At Field Site 1, we analyzed the soil temperature and soil moisture content data from November 2011 to April 2012 from soil depths of 1, 5, 10, and 15 cm in sunny slope, and from depths of 1, 5, and 10 cm in shady slope black soil farmland. At Field Site 2, soil samples were collected from a168mlong sloping black soil field at locations 10, 50, 100, and 150 m from the bottom of the slope at different depths of 0–1 cm, 1–5 cm, and 5–10 cm at the same location. Analysis of the monitored Site 1 soil temperature and soil moisture content data showed that the soil moisture content and soil temperature fit line is consistent with a Gaussian distribution rather than a linear distribution during the freeze–thaw period. The soil moisture content and time with temperature fit line is in accordance with a Gaussian distribution during the freeze–thaw period. Site 2 soil samples were analyzed, and the soil moisture contents of the sloping black soil farmland were obtained during six different freeze–thaw periods. It was verified that the soil moisture content and time with temperature fit line is in accordance with a Gaussian distribution during the six different freeze–thaw periods. The maximum surface soil moisture content was reached during the early freeze–thaw period, which is consistent with the natural phenomenon of early spring peak soil moisture content under temperature rise and snow melt. The soil moisture contents gradually increased from the top to the bottom in sloping black soil farmland during the freeze–thaw period. Since the soil moisture content is related to soil temperature during the freeze–thaw cycle, we validated the correlation between soil temperature spatiotemporal China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model–Soil Temperature (CMADS-ST) data and monitored data. The practicality of CMADS-ST in black soil slope farmland in the seasonal frozen ground zone of the study area is very good. This research has important significance for decision-making for protecting water and soil environments in black soil slope farmland.

Funder

National Natural Science Fund of China Programme

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3