A Feasibility Study on Extension of Measurement Distance in Vision Sensor Using Super-Resolution for Dynamic Response Measurement

Author:

Cho Dooyong1ORCID,Gong Junho2ORCID

Affiliation:

1. Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

2. Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology, Goyang-si 10223, Republic of Korea

Abstract

The current civil infrastructure conditions can be assessed through the measurement of displacement using conventional contact-type sensors. To address the disadvantages of traditional sensors, vision-based sensor measurement systems have been derived in numerous studies and proven as an alternative to traditional sensors. Despite the benefits of the vision sensor, it is well known that the accuracy of the vision-based displacement measurement is largely dependent on the camera extrinsic or intrinsic parameters. In this study, the feasibility study of a deep learning-based single image super-resolution (SISR) technique in a vision-based sensor system is conducted to alleviate the low spatial resolution of image frames at long measurement distance ranges. Additionally, its robustness is evaluated using shaking table tests. As a result, it is confirmed that the SISR can reconstruct definite images of natural targets resulting in an extension of the measurement distance range. Additionally, it is determined that the SISR mitigates displacement measurement error in the vision sensor-based measurement system. Based on this fundamental study of SISR in the feature point-based measurement system, further analysis such as modal analysis, damage detection, and so forth should be continued in order to explore the functionality of SR images by applying low-resolution displacement measurement footage.

Funder

Chungnam National University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference55 articles.

1. (2021). ASCE 2021 Report Card for America’s Infrastructures, ASCE.

2. (2014). ICE State of the Nation: Infrastructure 2014, ICE.

3. Vision-Based Displacement Sensor for Monitoring Dynamic Response Using Robust Object Search Algorithm;Fukuda;IEEE Sens. J.,2013

4. Cost-Effective Vision-Based System for Monitoring Dynamic Response of Civil Engineering Structures;Fukuda;Struct. Control Health Monit.,2010

5. Target-Free Approach for Vision-Based Structural System Identification Using Consumer-Grade Cameras;Yoon;Struct. Control Health Monit.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3