A Convolutional Neural Network with Spatial Location Integration for Nearshore Water Depth Inversion

Author:

He Chunlong1,Jiang Qigang1,Tao Guofang1,Zhang Zhenchao1

Affiliation:

1. College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China

Abstract

Nearshore water depth plays a crucial role in scientific research, navigation management, coastal zone protection, and coastal disaster mitigation. This study aims to address the challenge of insufficient feature extraction from remote sensing data in nearshore water depth inversion. To achieve this, a convolutional neural network with spatial location integration (CNN-SLI) is proposed. The CNN-SLI is designed to extract deep features from remote sensing data by considering the spatial dimension. In this approach, the spatial location information of pixels is utilized as two additional channels, which are concatenated with the input feature image. The resulting concatenated image data are then used as the input for the convolutional neural network. Using GF-6 remote sensing images and measured water depth data from electronic nautical charts, a nearshore water depth inversion experiment was conducted in the waters near Nanshan Port. The results of the proposed method were compared with those of the Lyzenga, MLP, and CNN models. The CNN-SLI model demonstrated outstanding performance in water depth inversion, with impressive metrics: an RMSE of 1.34 m, MAE of 0.94 m, and R2 of 0.97. It outperformed all other models in terms of overall inversion accuracy and regression fit. Regardless of the water depth intervals, CNN-SLI consistently achieved the lowest RMSE and MAE values, indicating excellent performance in both shallow and deep waters. Comparative analysis with Kriging confirmed that the CNN-SLI model best matched the interpolated water depth, further establishing its superiority over the Lyzenga, MLP, and CNN models. Notably, in this study area, the CNN-SLI model exhibited significant performance advantages when trained with at least 250 samples, resulting in optimal inversion results. Accuracy evaluation on an independent dataset shows that the CNN-SLI model has better generalization ability than the Lyzenga, MLP, and CNN models under different conditions. These results demonstrate the superiority of CNN-SLI for nearshore water depth inversion and highlight the importance of integrating spatial location information into convolutional neural networks for improved performance.

Funder

China Geological Survey Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3