Effects of Y2O3 and LiAl5O8 on the Microstructure and Optical Properties of Reactively Sintered AlON Based Transparent Ceramics

Author:

Yang Guojian,Sun Peng,Wang Yuezhong,Shi Zitao,Yan Qingwei,Li Shasha,Yang Guoyong,Yang Ke,Dun Shijie,Shang Peng,Deng Lifen,Li He,Jiang Nan

Abstract

Sintering aid was very crucial to influence the microstructure and thus the optical property of the sintered optical ceramics. The purpose of this work was to explain the difference between the sintering aids of Li+ and Y3+ on Al23O27N5 (AlON) ceramic via reaction sintering method. The effects of LiAl5O8 (LA) and Y2O3 on the sintering of Al2O3–AlN system were carefully compared, in terms of X-ray diffraction (XRD), microstructure, density, X-ray photoelectron spectroscopy (XPS) and optical transmittance. According to the XPS and XRD lattice analysis, the chemical structure of the materials was not obviously affected by different dopants. We firstly reported that, there was obvious volume expansion in the Y3+ dopped AlON ceramics, which was responsible for the low transparency of the ceramics. Obvious enhancements were achieved using Li+ aids from the results that Li: AlONs showing a higher transparency and less optical defects. A higher LA content (20 wt%) was effective to remove pores and thus obtain a higher transmittance (~86.8% at ~3.5 μm). Thus, pores were the main contributions to the property difference between the dopant samples. The importance of sintering aids should be carefully realized for the reaction sintering fabrication of AlON based ceramics towards high transparency.

Funder

Science and Technology Major Project of Ningbo

Yongjiang Talent Introduction Programme

National Natural Science Foundation of China

Natural Science Foundation of Tianjin

Publisher

MDPI AG

Subject

General Materials Science

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3