Influence of Magnetic Field and Temperature on Rheological Behavior of Magnetorheological Gel

Author:

Sun Min,Li Xiangdong,Zhou Zhou,Deng Ran,Chen Xu,Wang Jiong,Mao RunsongORCID

Abstract

In this paper, the effect of temperature on rheological properties of magnetorheological (MR) gel is investigated under rotational steady shear and oscillatory dynamic shear. A kind of fluid-like MR gel (MRG) was firstly synthesized by mixing carbonyl iron powder (CIP) with polymer matrix. Then, the relationship between yield stress, normal stress of MRG and shear rate under six temperatures and four magnetic field strengths were studied by rotational shear experiments. The results demonstrate that the dependence of shear stress on temperature displays an opposite tendency in comparison with that of normal stress on temperature. Moreover, maximum yield stress, one of the most important parameter of MR materials, decreases with the increment of temperature. Under oscillatory dynamic shear test, storage and loss moduli and normal stress of MRG all increase with temperature when a magnetic field is applied, which presents a contrary trend in the absence of a magnetic field. Related mechanisms about the alternation of microstructures of MRG were proposed to explain the above-mentioned phenomena. This paper is helpful in fabricating semi-active engineering devices using MR materials as a medium.

Funder

Science and Technology Project of the State Administration for Market Regulation of China

Nanyang Technological University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on the magnetorheological materials and applications;International Journal of Applied Electromagnetics and Mechanics;2024-08-09

2. Effect of Sepiolite on the Field-Dependent Normal Force of Magnetorheological Grease;Materials;2023-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3