Study on the Densification of Osmium by Experiment and First Principle Calculations

Author:

Yang Yunfei,Sun Junhao,Liu Wei,Hu Peng,Zhang Ruimin,Liu Hexiong,Gao Junyan,Wang Jinshu

Abstract

The sintering of osmium is critical for the preparation of raw material targets for film coating, which is the main application area of osmium. In order to get a better understanding of the intrinsic mechanism of densification of osmium, a serial study on the sintering behavior of osmium has been made in this study. By the master sintering curve (MSC) and constant heating rate (CHR) method, the sintering activation energy of nanosized osmium is evaluated to be about 340 kJ/mol, which is higher than most other metals. The density–functional theory calculation indicates the higher energy barrier of the surface atom and vacancy migration and lacking migration tunnel of inner point vacancies. For example, the diffusion of osmium atoms on the surface of particles is mainly limited by Os (1010), which has an energy barrier as high as 1.14 eV, that is higher than the W atom on W (110) of 0.99 eV. The vacancy migration energy barrier inside osmium’s grains is higher than 3.0 eV, while that of W is only 1.7 eV. This means that it is more difficult for osmium to achieve a high density compared with W, which is consistent with the experimental results. Accordingly, the proposed strategy provides a new opportunity to design a sintering process for target fabrication with excellent properties for various applications.

Funder

National Natural Science Foundation of China

National Natural Science Fund for Innovative Research Groups

Publisher

MDPI AG

Subject

General Materials Science

Reference55 articles.

1. The most incompressible metal osmium at static pressures above 750 gigapascals;Dubrovinsky;Nature,2015

2. Young, D.A. Phase Diagrams of the Elements, 1991.

3. Incompressibility of osmium metal at ultrahigh pressures and temperatures;Armentrout;J. Appl. Phys.,2010

4. Preparation Process and Quality Characterization of High Density Fine Grain Osmium Target for Coated Cathode;Ma;Journal of Physics: Conference Series,2022

5. Role of osmium in the electrical transport mechanism of polycrystalline tin oxide thin films;Forleo;Appl. Phys. Phys. Lett.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3