The Effect of Different Morphologies of WO3/GO Nanocomposite on Photocatalytic Performance

Author:

Esencan Türkaslan BanuORCID,Çelik Aziz KerimORCID,Dalbeyler AyçaORCID,Fantuzzi NicholasORCID

Abstract

Tungsten trioxide/graphene oxide (WO3/GO) nanocomposites have been successfully synthesized using in situ and ex situ chemical approaches. Graphite and tungsten carbide (WC) were employed to perform in situ synthesis, and WO3 and GO were employed to perform the ex situ synthesis of WO3/GO nanocomposites. GO, which was required for ex situ synthesis, is synthesized via the modified and improved Hummers method. XRD, SEM/EDS, and FTIR are used for the characterization of the nanocomposite. From the XRD of the WO3/GO nanocomposites, it was observed that WO3 distributed uniformly on graphene oxide sheets or was incorporated between the sheets. The photocatalytic activities of WO3/GO nanocomposites were evaluated by methylene blue (MB) adsorption and visible light photocatalytic degradation activities by UV-vis spectroscopy. The results showed that the efficiency of the photocatalytic activity of the nanocomposite depends on different synthesis methods and the morphology resulting from the changed method. WO3/GO nanocomposites synthesized by both methods exhibited much higher photocatalytic efficiencies than pure WO3, and the best degradation efficiencies for MB was 96.30% for the WO3/GO in situ synthesis nanocomposite.

Funder

Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3