Studying Acoustic Behavior of BFRP Laminated Composite in Dual-Chamber Muffler Application Using Deep Learning Algorithm

Author:

Altabey Wael A.ORCID,Noori MohammadORCID,Wu Zhishen,Al-Moghazy Mohamed A.,Kouritem Sallam A.ORCID

Abstract

Over the last two decades, several experimental and numerical studies have been performed in order to investigate the acoustic behavior of different muffler materials. However, there is a problem in which it is necessary to perform large, important, time-consuming calculations particularly if the muffler was made from advanced materials such as composite materials. Therefore, this work focused on developing the concept of the indirect dual-chamber muffler made from a basalt fiber reinforced polymer (BFRP) laminated composite, which is a monitoring system that uses a deep learning algorithm to predict the acoustic behavior of the muffler material in order to save effort and time on muffler design optimization. Two types of deep neural networks (DNNs) architectures are developed in Python. The first DNN is called a recurrent neural network with long short-term memory blocks (RNN-LSTM), where the other is called a convolutional neural network (CNN). First, a dual-chamber laminated composite muffler (DCLCM) model is developed in MATLAB to provide the acoustic behavior datasets of mufflers such as acoustic transmission loss (TL) and the power transmission coefficient (PTC). The model training parameters are optimized by using Bayesian genetic algorithms (BGA) optimization. The acoustic results from the proposed method are compared with available experimental results in literature, thus validating the accuracy and reliability of the proposed technique. The results indicate that the present approach is efficient and significantly reduced the time and effort to select the muffler material and optimal design, where both models CNN and RNN-LSTM achieved accuracy above 90% on the test and validation dataset. This work will reinforce the mufflers’ industrials, and its design may one day be equipped with deep learning based algorithms.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3