Root-Zone Bacterial Diversity in Field-Grown Individual Plants from Alfalfa Lines with Wild Relatives in Their Genetic Backgrounds

Author:

Omirou Michalis12,Michaelidou Urania12,Fasoula Dionysia A.3,Humphries Alan4ORCID,Kilian Benjamin5ORCID,Ioannides Ioannis M.12

Affiliation:

1. Agrobiotechnology Department, Agricultural Research Institute, Athalassa, P.O. Box 22016, Nicosia 1516, Cyprus

2. Environmental Microbiology and Biotechnology Center, Agricultural Research Institute, P.O. Box 22016, Nicosia 1516, Cyprus

3. Department of Plant Breeding, Agricultural Research Institute, Athalassa, P.O. Box 22016, Nicosia 1516, Cyprus

4. Australian Pastures Genebank, South Australian Research and Development Institute, Urrbrae, SA 5064, Australia

5. Global Crop Diversity Trust, Platz der Vereinten Nationen 7, 53113 Bonn, Germany

Abstract

Alfalfa (Medicago sativa L.) is a vitally important perennial fodder legume worldwide. Given their particular traits, alfalfa crop wild relatives (CWRs) could be used to develop cultivars that can tolerate extreme environmental and climatic conditions. Until now, researchers have overlooked the composition and structure of bacterial communities in the root zone of alfalfa and its relevant CWRs and their influence on forage performance under actual field conditions. In this study, high-throughput sequencing of 16S rRNA analysis was performed to investigate the diversity and assemblies of bacterial communities in the bulk soil and in the root zone of individual field-grown Medicago plants arranged in a honeycomb selection design. The plants used in this study were M. sativa × M. arborea hybrids (Genotypes 6 and 8), the closely-related M. sativa nothosubsp. varia (Martyn) Arcang. (Genotype 13), and M. sativa ssp. sativa (Genotype 20). The bacterial communities in the root-zone samples and the assemblies in the bulk soil differed significantly. Genotype 13 was found to have distinct bacterial assemblies from the other genotypes while exhibiting the lowest forage productivity. These findings suggest that plant productivity may influence the composition of bacterial communities in the root zone. Biomarker analysis conducted using linear discriminant analysis (LDA) revealed that only members of the Rhizobiales order were enriched in the M. sativa nothosubsp. varia root zone whereas taxa belonging to Sphingomonas and various Bacteriodota were enriched in the other genotypes. Of the shared taxa identified in the root zone of the Medicago lines, the abundance of specific taxa, namely, Flavisolibacter, Stenotrophomonas, and Sphingomonas, were positively associated with forage yield. This pioneering study, in which the root zones of individual Medicago plants under actual field conditions were examined, offers evidence of differences in the bacterial composition of alfalfa genotypes with varying genetic backgrounds. Its findings indicate that particular bacterial taxa may favorably influence plant performance. This study covered the first six months of crop establishment and paves the way for further investigations to advance understanding of how shifts in bacterial assemblies in alfalfa roots affect plant performance over time.

Funder

Cyprus Research and Innovation Foundation

European Regional Development Fund

the Republic of Cyprus

Norwegian Government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3