A New Machine Learning Approach in Detecting the Oil Palm Plantations Using Remote Sensing Data

Author:

Xu Kaibin,Qian JingORCID,Hu ZengyunORCID,Duan ZhengORCID,Chen Chaoliang,Liu Jun,Sun Jiayu,Wei Shujie,Xing Xiuwei

Abstract

The rapid expansion of oil palm is a major driver of deforestation and other associated damage to the climate and ecosystem in tropical regions, especially Southeast Asia. It is therefore necessary to precisely detect and monitor oil palm plantations to safeguard the ecosystem services and biodiversity of tropical forests. Compared with optical data, which are vulnerable to cloud cover, the Sentinel-1 dual-polarization C-band synthetic aperture radar (SAR) acquires global observations under all weather conditions and times of day and shows good performance for oil palm detection in the humid tropics. However, because accurately distinguishing mature and young oil palm trees by using optical and SAR data is difficult and considering the strong dependence on the input parameter values when detecting oil palm plantations by employing existing classification algorithms, we propose an innovative method to improve the accuracy of classifying the oil palm type (mature or young) and detecting the oil palm planting area in Sumatra by fusing Landsat-8 and Sentinel-1 images. We extract multitemporal spectral characteristics, SAR backscattering values, vegetation indices, and texture features to establish different feature combinations. Then, we use the random forest algorithm based on improved grid search optimization (IGSO-RF) and select optimal feature subsets to establish a classification model and detect oil palm plantations. Based on the IGSO-RF classifier and optimal features, our method improved the oil palm detection accuracy and obtained the best model performance (OA = 96.08% and kappa = 0.9462). Moreover, the contributions of different features to oil palm detection are different; nevertheless, the optimal feature subset performed the best and demonstrated good potential for the detection of oil palm plantations.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3