Benefits of Combining ALOS/PALSAR-2 and Sentinel-2A Data in the Classification of Land Cover Classes in the Santa Catarina Southern Plateau

Author:

Costa Jessica da SilvaORCID,Liesenberg VeraldoORCID,Schimalski Marcos BeneditoORCID,Sousa Raquel Valério de,Biffi Leonardo JosoéORCID,Gomes Alessandra Rodrigues,Neto Sílvio Luís RafaeliORCID,Mitishita EdsonORCID,Bispo Polyanna da ConceiçãoORCID

Abstract

The Santa Catarina Southern Plateau is located in Southern Brazil and is a region that has gained considerable attention due to the rapid conversion of the typical landscape of natural grasslands and wetlands into agriculture, reforestation, pasture, and more recently, wind farms. This study’s main goal was to characterize the polarimetric attributes of the experimental quad-polarization acquisition mode of the Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR-2) for mapping seven land cover classes. The polarimetric attributes were evaluated alone and combined with SENTINEL-2A using a supervised classification method based on the Support Vector Machine (SVM) algorithm. The results showed that the intensity backscattering alone reached an overall classification accuracy of 37.48% and a Kappa index of 0.26. Interestingly, the addition of polarimetric features increased to 71.35% and 0.66, respectively. It shows that the use of polarimetric decomposition features was relatively efficient in discriminating land cover classes. SENTINEL-2A data alone performed better and achieved a weighted overall accuracy and Kappa index of 85.56% and 0.82. This increase was also significant for the Z-test. However, the addition of ALOS/PALSAR-2 derived features to SENTINEL-2A slightly improved accuracy and was marginally significant at a 95% confidence level only when all features were considered. Possible implications for that performance are the accumulated precipitation prior to SAR data acquisition, which coincides with the rainy season period. The experimental quad-polarization mode of ALOS/PALSAR- 2 shall be evaluated in the near future over different seasonal conditions to confirm results. Alternatively, further studies are then suggested by focusing on additional features derived from SAR data such as texture and interferometric coherence to increase classification accuracy. These measures would be an interesting data source for monitoring specific land cover classes such as the threatened grasslands and wetlands during periods of frequent cloud coverage. Future investigations could also address multitemporal approaches employing either single or multifrequency SAR.

Funder

Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3