Real-Time Detection and Spatial Localization of Insulators for UAV Inspection Based on Binocular Stereo Vision

Author:

Ma Yunpeng,Li Qingwu,Chu Lulu,Zhou YaqinORCID,Xu Chang

Abstract

Unmanned aerial vehicles (UAVs) have become important tools for power transmission line inspection. Cameras installed on the platforms can efficiently obtain aerial images containing information about power equipment. However, most of the existing inspection systems cannot perform automatic real-time detection of transmission line components. In this paper, an automatic transmission line inspection system incorporating UAV remote sensing with binocular visual perception technology is developed to accurately detect and locate power equipment in real time. The system consists of a UAV module, embedded industrial computer, binocular visual perception module, and control and observation module. Insulators, which are key components in power transmission lines as well as fault-prone components, are selected as the detection targets. Insulator detection and spatial localization in aerial images with cluttered backgrounds are interesting but challenging tasks for an automatic transmission line inspection system. A two-stage strategy is proposed to achieve precise identification of insulators. First, candidate insulator regions are obtained based on RGB-D saliency detection. Then, the skeleton structure of candidate insulator regions is extracted. We implement a structure search to realize the final accurate detection of insulators. On the basis of insulator detection results, we further propose a real-time object spatial localization method that combines binocular stereo vision and a global positioning system (GPS). The longitude, latitude, and height of insulators are obtained through coordinate conversion based on the UAV’s real-time flight data and equipment parameters. Experiment results in the actual inspection environment (220 kV power transmission line) show that the presented system meets the requirement of robustness and accuracy of insulator detection and spatial localization in practical engineering.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3