Characterizing the Development Pattern of a Colluvial Landslide Based on Long-Term Monitoring in the Three Gorges Reservoir

Author:

Liang Xin,Gui LeiORCID,Wang Wei,Du Juan,Ma Fei,Yin Kunlong

Abstract

Since the impoundment of the Three Gorges Reservoir (TGR) in June 2003, the fluctuation of the reservoir water level coupled with rainfall has resulted in more than 2500 landslides in this region. Among these instability problems, most colluvial landslides exhibit slow-moving patterns and pose a significant threat to local people and channel navigation. Advanced monitoring techniques are therefore implemented to investigate landslide deformation and provide insights for the subsequent countermeasures. In this study, the development pattern of a large colluvial landslide, locally named the Ganjingzi landslide, is analyzed on the basis of long-term monitoring. To understand the kinematic characteristics of the landslide, an integrated analysis based on real-time and multi-source monitoring, including the global navigation satellite system (GNSS), crackmeters, inclinometers, and piezometers, was conducted. The results indicate that the Ganjingzi landslide exhibits a time-variable response to the reservoir water fluctuation and rainfall. According to the supplement of community-based monitoring, the evolution of the landslide consists of three stages, namely the stable stage before reservoir impoundment, the initial movement stage of retrogressive failure, and the shallow movement stage with stepwise acceleration. The latter two stages are sensitive to the drawdown of reservoir water level and rainfall infiltration, respectively. All of the monitoring approaches used in this study are significant for understanding the time-variable pattern of colluvial landslides and are essential for landslide mechanism analysis and early warning for risk mitigation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3