Analysis of Forward Model, Data Type, and Prior Information in Probabilistic Inversion of Crosshole GPR Data

Author:

Qin HuiORCID,Wang ZhengzhengORCID,Tang YuORCID,Geng TiesuoORCID

Abstract

The crosshole ground penetrating radar (GPR) is a widely used tool to map subsurface properties, and inversion methods are used to derive electrical parameters from crosshole GPR data. In this paper, a probabilistic inversion algorithm that uses Markov chain Monte Carlo (MCMC) simulations within the Bayesian framework is implemented to infer the posterior distribution of the relative permittivity of the subsurface medium. Close attention is paid to the critical elements of this method, including the forward model, data type and prior information, and their influence on the inversion results are investigated. First, a uniform prior distribution is used to reflect the lack of prior knowledge of model parameters, and inversions are performed using the straight-ray model with first-arrival traveltime data, the finite-difference time-domain (FDTD) model with first-arrival traveltime data, and the FDTD model with waveform data, respectively. The cases using first-arrival traveltime data require an unreasonable number of model evaluations to converge, yet are not able to recover the real relative permittivity field. In contrast, the inversion using the FDTD model with waveform data successfully infers the correct model parameters. Then, the smooth constraint of model parameters is employed as the prior distribution. The inversion results demonstrate that the prior information barely affects the inversion results using the FDTD model with waveform data, but significantly improves the inversion results using first-arrival traveltime data by decreasing the computing time and reducing uncertainties of the posterior distribution of model parameters.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3