Potential Use of Treated Wastewater as Groundwater Recharge Using GIS Techniques and Modeling Tools in Dhuleil-Halabat Well-Field/Jordan

Author:

Shawaqfah Moayyad,Almomani FaresORCID,Al-Rousan TalebORCID

Abstract

Due to limited rainfall and precipitations, different developing countries depend on groundwater (G.W.) resources to challenge water scarcity. This practice of continuous and excessive G.W. pumping has led to severe water shortages and deteriorated water quality in different countries. Recharging of treated wastewater (TWW) into G.W. provides a critical solution for solving water scarcity, extending the well's service life, and maintaining the G.W. supply. However, effective injection practice requires accurate tools and methods to determine the best location for groundwater recharge (GWRC). This work offers a new tool based on GIS–Multi-Criteria Analysis to identify the potential site and locations for GWRC with TWW. The developed methodology was applied to one of the most used well-field areas in Jordan (Dhuleil-Halabat). The G.W. flow for the B-B2/A7 formation system in the area of study was simulated using Processing Modflow (version 8.0). The analysis combined six thematic maps produced following the environmental, technical, and economic criteria to draw conclusions and recommendations. Both steady and transient conditions were used to predict the future changes that might occur under different stresses and after continuous GWR. The study evaluated three possible scenarios of artificial GWRC to evaluate the process efficiency and determine the effect on the water table level. The results revealed that only 0.05% (0.14 Km2) of the total surface area of 450 Km2 is suitable for GWRC. A GWRC with TWW at a rate of 3.65 Mm3/year (MCMY) would provide a good G.W. table recovery to 39.68 m in the year 2025, maintain a steady-state water table ≥ of 50.77 m for up to six years, and secure water supply for future generations. The proposed methodology can be used as a useful tool that can be applied to regulate the GWRC practice worldwide.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3