Affiliation:
1. College of Urban Construction, Changzhou University, Changzhou 213164, China
Abstract
It is still challenging to anticipate with accuracy how tunnels will behave and if they will fail when subjected to an earthquake load. In this study, assuming nonlinear material behavior and a three-dimensional inelastic rock medium, the theory of damage mechanics is applied to numerical simulation to build a curved tunnel-surrounding rock model, whose correctness was verified in laboratory experiments. To better understand the influence of surrounding rock strength on the seismic performance of a curved tunnel, the stratum parameters of the curved tunnel-surrounding rock system are quantified. The findings demonstrate that the damage process in curved tunnels is a circular process of damage change, and the model accurately captures these structural aspects of the damage evolution process. In addition, structural damage can be identified using displacement detection because the displacement of a curved tunnel is directly related to its compression damage. Finally, the seismic response of the curved tunnel-surrounding rock system is studied parametrically to determine the extent to which different parameters affect the seismic response. These parameters, including elastic modulus, friction angle, cohesion, and Poisson’s ratio, are characteristics of rock-medium materials. We then created multi-factor evaluation formulas to direct the surrounding rock to reinforce.
Funder
Industry-University-Research cooperation Project of the Jiangsu Province of China
Natural Science Foundation of the Jiangsu Higher Education Institutions of China
Changzhou Leading Innovative Talents Introduction and Cultivation Project
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献