Analysis of Factors Affecting the Effectiveness of Oil Spill Clean-Up: A Bayesian Network Approach

Author:

Zhong Liangxia123,Wu Jiaxin123ORCID,Wen Yiqing123ORCID,Yang Bingjie4,Grifoll Manel5ORCID,Hu Yunping123,Zheng Pengjun123

Affiliation:

1. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China

2. Jiangsu Province Collaborative Innovation Center for Modern Urban Traffic Technologies, Nanjing 211189, China

3. National Traffic Management Engineering & Technology Research Centre, Ningbo University Sub-Center, Ningbo 315832, China

4. Ningbo Development Planning Institute, Ningbo 315832, China

5. Barcelona School of Nautical Studies, Universitat Politècnica de Catalunya (UPC—BarcelonaTech), 08003 Barcelona, Spain

Abstract

Ship-related marine oil spills pose a significant threat to the environment, and while it may not be possible to prevent such incidents entirely, effective clean-up efforts can minimize their impact on the environment. The success of these clean-up efforts is influenced by various factors, including accident-related factors such as the type of accident, location, and environmental weather conditions, as well as emergency response-related factors such as available resources and response actions. To improve targeted and effective responses to oil spills resulting from ship accidents and enhance oil spill emergency response methods, it is essential to understand the factors that affect their effectiveness. In this study, a data-driven Bayesian network (TAN) analysis approach was used with data from the U.S. Coast Guard (USCG) to identify the key accident-related factors that impact oil spill clean-up performance. The analysis found that the amount of discharge, severity, and the location of the accident are the most critical factors affecting the clean-up ratio. These findings are significant for emergency management and planning oil spill clean-up efforts.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

EC H2020 Project

Donghai Academy of Ningbo University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3