Influence of Radioactive Sludge Content on Vitrification of High-Level Liquid Waste

Author:

Tan Shengheng1,Chang Jiong1,Liu Xiao1,Sun Shikuan2,Xian Liang1,Zhang Shengdong1

Affiliation:

1. Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China

2. School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China

Abstract

The radioactive sludges formed at the bottom of high-level liquid waste (HLW) storage tanks pose challenges when the HLWs are vitrified. This study aims to determine the influence of the sludge content (enriched in Na2O, Al2O3, NiO, Fe2O3, and BaSO4) on the structure and properties of waste glasses in order to find the optimal ratio of sludges to HLW during vitrification. In the experiments, the simulated sludge and simulated HLW were mixed at different ratios from 0:8 to 4:4, with an overall waste content of 16 wt %, in a borosilicate glass wasteform. It is found that the glass density, molar volume, sulfur retention, and glass transition temperature changed little when increasing the sludge content of the glasses, while the viscosity, chemical durability, and crystallization features of the glasses varied notably. The crystals formed in the glasses during the thermal treatment were exclusively Fe-substituted diopside (Ca, Mg, Fe)2Si2O6. An increase in the Al2O3 and NiO content of the glasses may have been responsible for the increased crystallinity at high temperatures. The leaching rate of Si, B, Na, and Cs from the glasses declined with the increasing addition of sludge to the glasses. Although all the glasses fulfilled the requirements for vitrification processing and glass-product performance, it is recommended that the sludge content of the whole waste should not exceed 25 wt %. This study guides further research on the immobilization of high-level sludges.

Funder

China National Nuclear Corporation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3