Impact of Heat Pump and Cogeneration Integration on Power Distribution Grids Based on Transition Scenarios for Heating in Urban Areas

Author:

Fesefeldt Marten1ORCID,Capezzali Massimiliano1ORCID,Bozorg Mokhtar1ORCID,Karjalainen Riina1

Affiliation:

1. Institute of Energy and Electrical Systems (IESE), School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Cheseaux 1, 1400 Yverdon-les-Bains, Switzerland

Abstract

Electrification of final use sectors such as heating and mobility is often proposed as an effective pathway towards decarbonization of urban areas. In this context, power-driven heat pumps (HP) are usually strongly fostered as alternatives to fossil-burning boilers in municipal planning processes. In continental climates, this leads to substantially increased electricity demand in winter months that, in turn may lead to stress situations on local power distribution grids. Hence, in parallel to the massive implementation of electric HP, strategies must be put in place to ensure the grid stability and operational security, notably in terms of voltage levels, as well as transformer and line’s capacity limits. In this paper, three such strategies are highlighted within the specific situation of a mid-sized Swiss city, potentially representative of many continental, central Europe urban zones as a test-case. The hourly-based power flow simulations of the medium- and low-voltage distribution grids show the impact of various future scenarios, inspired from typical territorial energy planning processes, implying various degrees of heat pumps penetration. The first strategy relies on the implementation of decentralized combined heat and power (CHP) units, fed by the existing natural gas network and is shown to provide an effective pathway to accommodate heat pump electricity demand on urban power distribution grids. Two alternative solutions based on grid reinforcements and controlled usage of reactive power from photovoltaic (PV) inverters are additionally considered to ensure security constraints of grid operation and compared with the scenario relying on CHP deployment.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3