New Equations to Evaluate Lateral Displacement Caused by Liquefaction Using the Response Surface Method

Author:

Pirhadi NimaORCID,Tang Xiaowei,Yang and Qing

Abstract

Few empirical and semi-empirical approaches have considered the influence of the geology, tectonic source, causative fault type, and frequency content of earthquake motion on lateral displacement caused by liquefaction (DH). This paper aims to address this gap in the literature by adding an earthquake parameter of the standardized cumulative absolute velocity (CAV5) to the original dataset for analyzing. Furthermore, the complex influence of fine content in the liquefiable layer (F15) is analyzed by deriving two different equations: the first one is for the whole range of parameters, and the second one is for a limited range of F15 values under 28% in order to the F15’s critical value presented in literature. The new response surface method (RSM) approach is applied on the basis of the artificial neural network (ANN) model to develop two new equations. Moreover, to illustrate the capability and efficiency of the developed models, the results of the RSM models are examined by comparing them with an additional three available models using data from the Chi-Chi earthquake sites that were not used for developing the models in this study. In conclusion, the RSM provides a capable tool to evaluate the liquefaction phenomenon, and the results fully justify the complex effect of different values of F15.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference47 articles.

1. Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-Induced Lateral Spread;Bartlett,1992

2. Progressive Failure of Lower San Fernando Dam

3. Numerical Simulation of Liquefaction-Induced Deformations

4. Seismic Ground Deformation Modeling;Liao,2002

5. A numerical model for dynamic soil liquefaction analysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3