Experimental Study of a Hybrid Wave Energy Converter Integrated in a Harbor Breakwater

Author:

Rosa-Santos Paulo,Taveira-Pinto Francisco,Clemente Daniel,Cabral Tomás,Fiorentin FelipeORCID,Belga Filipe,Morais Tiago

Abstract

Sea ports are infrastructures with substantial energy demands and often responsible for air pollution and other environmental problems, which may be minimized by using renewable energy, namely electricity harvested from ocean waves. In this regard, a wide variety of concepts to harvest wave energy are available and some shoreline technologies are already in an advanced development phase. The SE@PORTS project aims to assess the suitability and viability of existing wave energy conversion technologies to be integrated in harbor breakwaters, in order to take advantage of their high exposure to ocean waves. This paper describes the experimental study carried out to assess the performance of a hybrid wave energy converter (WEC) integrated in the rubble-mound structure that was proposed for the extension of the North breakwater of the Port of Leixões, Portugal. The hybrid concept combines the overtopping and the oscillating water column principles and was tested on a geometric scale of 1/50. This paper is focused on the assessment of the effects of the hybrid WEC integration on the case-study breakwater, both in terms of its stability and functionality. The 2D physical model included the reproduction of the seabed bathymetry in front of the breakwater and the generation of a wide range of irregular sea states, including extreme wave conditions. The experimental results shown that the integration of the hybrid WEC in the breakwater does not worsens the stability of its toe berm blocks and reduces the magnitude of the overtopping events. The conclusions obtained are therefore favorable to the integration of this type of devices on harbor breakwaters.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference40 articles.

1. Levelized Cost of Electricity Renewable Energy Technologies;Kost,2013

2. World Energy Resources 2016,2016

3. Quantifying the global wave power resource

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3