Stability Analysis of Switched Linear Singular Systems with Unstable and Stable Modes

Author:

Xiong Jiandong1,Wang Yidian1,Huo Yanfang1,Zhao Hongpeng1

Affiliation:

1. College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China

Abstract

In this paper, stability is studied for a class of switched singular systems containing both stable and unstable modes. By introducing a time-varying piecewise Lyapunov function (TVPLF) and a mode-dependent average dwell time (ADT) switching rule, the computable sufficient conditions for system stability are derived. The time-varying piecewise Lyapunov functions are piecewise continuously differentiable on every mode (but may not be differentiable at the interpolating points of the dwell time). This Lyapunov function method is particularly advantageous in overcoming the limitations of traditional multiple Lyapunov function (MLF) methods, which may not have a feasible solution when dealing with switched systems containing only unstable modes. As such, the TVPLF offers greater flexibility in application. Compared with the conventional ADT switching rule, the mode-dependent ADT switching rule not only enables each mode to have its own ADT but also allows for its own switching strategy. Specifically, the stable mode adopts a slow switching strategy while the unstable mode adopts a fast one, thereby reducing the conservatism of the ADT switching rule. Furthermore, based on the stability analysis, the time-varying controllers are proposed to stabilize the switched singular system, which can be expressed as the sequential linear combination of a series of linear state feedback on each mode. The proposed controllers are continuous for each mode, which are different from the controllers designed through the traditional MLF and MDLF methods, where the controllers designed by traditional MLF are the time-invariant linear state feedback in each mode while the controllers designed by the MDLF are piecewise continuous for each mode.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3