Disulfiram Enhances the Antineoplastic Activity and Sensitivity of Murine Hepatocellular Carcinoma to 5-FU via Redox Management

Author:

Hassan Iftekhar1ORCID,Ebaid Hossam1,Alhazza Ibrahim M.1,Al-Tamimi Jameel1,Rady Ahmed M.1

Affiliation:

1. Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

The efficacy of anticancer drug 5-FU is suppressed due to various factors, including severe side effects and decreased insensitivity during prolonged chemotherapy. Elevated endogenous copper (Cu) levels are one of the prominent hallmark features of cancer cells. In the present investigation, this feature was targeted in diethyl nitrosamine-phenobarbital-induced hepatocellular carcinoma (HCC) in a rat model system by an established anticancer drug, 5-FU, co-administered with copper and its chelating agent, disulfiram. After treatment with the test chemicals in HCC-induced rats, blood and liver samples were subjected to biochemical, molecular, and histopathological analyses. The analysis revealed that reactive oxygen species-mediated oxidative stress is the crucial etiological reason for the pathogenesis of HCC in rats, as evidenced by the significantly compromised activity of major antioxidant enzymes and elevated levels of oxidative damaged products with major histological alterations compared to the control. However, the combination of 5-FU with DSF demonstrated a significant improvement in most of the parameters, followed by 5-FU-Cu in the combination-treated groups. The combination treatment improved the histological details and triggered apoptosis in the cancer cells to a remarkable extent, as the levels of cleaved PARP and caspase-3 were significantly higher than those in the HCC rats treated with the drug alone. The present study envisages that manipulating the Cu-level greatly enhances the antineoplastic activity of 5-FU and sensitizes cancer cells to the increased efficacy of the drug.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3