Regulatory Mechanism on Anti-Glycolytic and Anti-Metastatic Activities Induced by Strobilanthes crispus in Breast Cancer, In Vitro

Author:

Muhammad Siti Nur Hasyila1ORCID,Safuwan Nur Arnida Mohd1ORCID,Yaacob Nik Soriani1ORCID,Fauzi Agustine Nengsih1ORCID

Affiliation:

1. Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia

Abstract

An active fraction of S. crispus, F3, and its bioactive compounds (lutein, β-sitosterol, and stigmasterol) were reported to have anti-glycolytic activities in MDA-MB-231 cells. Since glycolysis can also regulate metastatic activities in cancer cells, this study investigated the mechanism underlying the anti-glycolytic and anti-metastatic activities induced by F3 and its bioactive compounds on MDA-MB-231 cells. The cells were treated with IC50 concentrations of F3, lutein, β-sitosterol, and stigmasterol. GLUT1 protein expression and localization were then observed using a fluorescence microscope. We found that F3, lutein, and β-sitosterol inhibit localization of GLUT1 to the cell membrane, which causes the decrease in glucose uptake. This is supported by a reduction in PKC activity, measured using a spectrophotometer, and increased TXNIP protein expression detected by Western blotting. Both TXNIP and PKC are involved in GLUT1 activation and localization. The expression of signaling proteins involved in the PI3K/AKT pathway was also measured using a flow cytometer. Results show that F3, lutein, β-sitosterol, and stigmasterol reduced the expression of AKT, pAKT, mTOR, and HIF1α in MDA-MB-231 cells. Transwell migration assay was used to measure migration of the MDA-MB-231 cells. A reduction in fibronectin protein expression was observed by fluorescence microscopy, after treatments with F3 and its bioactive compounds, leading to a reduction in the MDA-MB-231 cells’ migratory abilities. As a conclusion, F3 acts as a metabolic inhibitor by inhibiting metabolic rewiring in the promotion of cancer metastasis, potentially due to the presence of its bioactive compounds.

Funder

Universiti Sains Malaysia

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3